purely inseparable morphism - определение. Что такое purely inseparable morphism
DICLIB.COM
Языковые инструменты на ИИ
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое purely inseparable morphism - определение

Purely inseparable field extension; Purely inseparable; Radicial extension; Purely inseparable extensions; Modular extension

Purely inseparable extension         
In algebra, a purely inseparable extension of fields is an extension k ⊆ K of fields of characteristic p > 0 such that every element of K is a root of an equation of the form xq = a, with q a power of p and a in k. Purely inseparable extensions are sometimes called radicial extensions, which should not be confused with the similar-sounding but more general notion of radical extensions.
Computably inseparable         
IN COMPUTABILITY THEORY, PAIRS OF SETS OF NATURAL NUMBERS THAT CANNOT BE "SEPARATED" WITH A RECURSIVE SET
Effectively separable; Effectively separable set; Effectively separable sets; Effectively inseparable; Effectively inseparable sets; Recursively separable sets; Recursively separable; Recursively inseparable; Recursive inseparability; Recursively inseparable sets
In computability theory, two disjoint sets of natural numbers are called computably inseparable or recursively inseparable if they cannot be "separated" with a computable set.Monk 1976, p.
Morphism of schemes         
RINGED SPACE MORPHISM BETWEEN SCHEMES; LOCALLY A COMMUTATIVE RING HOMOMORPHISM BETWEEN COORDINATE RINGS
Scheme morphism; Graph morphism (algebraic geometry)
In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.

Википедия

Purely inseparable extension

In algebra, a purely inseparable extension of fields is an extension k ⊆ K of fields of characteristic p > 0 such that every element of K is a root of an equation of the form xq = a, with q a power of p and a in k. Purely inseparable extensions are sometimes called radicial extensions, which should not be confused with the similar-sounding but more general notion of radical extensions.